



# HEIDENHAIN

Product Information

**ECI 119** Absolute Rotary Encoder

November 2010

### ECI 119 Rotary encoders without integral bearing for integration in motors

Hollow through shaft Ø 50 mm

Inductive scanning principle



mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- $\square$  = Bearing
- $\bigotimes$  = Required mating dimensions
- $\oplus$  = Cylinder head screw ISO 4762-M3 with ISO 7092 (3x) washer. Tightening torque 0.9±0.05 Nm
- @ = SW 2.0 (6x). Evenly tighten crosswise with increasing tightening torque; final tightening torque 0.5 ±0.05 Nm
- Image: Book and Control and
- (9) = Compensation of mounting tolerances and thermal expansion, no dynamic motion
- Image: Bernet State S
- Required mounting frame for output cable with cable clamp (accessory). Bending radius of connecting wires min. R3

Direction of shaft rotation for output signals as per the interface description

|                                                      | Absolute                                                                                             |                                                               |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                      | Singleturn                                                                                           |                                                               |
|                                                      | ECI 119                                                                                              |                                                               |
| Absolute position values                             | EnDat 2.1                                                                                            | EnDat 2.1                                                     |
| Order designation*                                   | EnDat 01                                                                                             | EnDat 21                                                      |
| Positions per revolution                             | 524288 (19 bits)                                                                                     |                                                               |
| Elec. permissible speed/<br>Deviations <sup>1)</sup> | $\leq 3750 \text{ min}^{-1}/\pm 128 \text{ LSB}$<br>$\leq 6000 \text{ min}^{-1}/\pm 512 \text{ LSB}$ | $\leq$ 6000 min <sup>-1</sup> (for continuous position value) |
| Calculation time $\ensuremath{t_{\text{cal}}}$       | ≤ 8 µs                                                                                               |                                                               |
| Incremental signals                                  | ∼ 1 V <sub>PP</sub>                                                                                  | -                                                             |
| Line counts                                          | 32                                                                                                   | -                                                             |
| Cutoff frequency –3 dB                               | ≥ 6 kHz typical                                                                                      | -                                                             |
| System accuracy                                      | ± 90"                                                                                                |                                                               |
| Power supply                                         | 5V±5%                                                                                                |                                                               |
| Power consumption<br>(maximum)                       | ≤ 0.85 W                                                                                             |                                                               |
| Current consumption (typical)                        | 135 mA (without load)                                                                                |                                                               |
| Electrical connection                                | PCB connector, JAE, 15-pin                                                                           |                                                               |
| Shaft                                                | Hollow through shaft D = 50 mm                                                                       |                                                               |
| Mech. permissible speed n                            | $\leq 6000 \text{ min}^{-1}$                                                                         |                                                               |
| Moment of inertia of rotor                           | $63 \cdot 10^{-6}  \text{kgm}^2$                                                                     |                                                               |
| Permissible axial motion of measured shaft           | ± 0.3 mm                                                                                             |                                                               |
| Vibration 55 to 2000 Hz<br>Shock 6 ms                | $\leq$ 300 m/s <sup>2</sup> (EN 60068-2-6)<br>$\leq$ 1000 m/s <sup>2</sup> (EN 60068-2-27)           |                                                               |
| Max. operating temperature                           | 115 °C                                                                                               |                                                               |
| Min. operating temperature                           | -20 °C                                                                                               |                                                               |
| Protection EN 60529                                  | IP 20 when mounted                                                                                   |                                                               |
| Weight                                               | Approx. 0.14 kg                                                                                      |                                                               |

\* Please select when ordering <sup>1)</sup> Velocity-dependent deviation between the absolute and incremental signals

### **Mounting Information**

The ECI 119 is an encoder without integral bearing. This means that mounting and operating conditions influence the functional reserves of the encoder. It is essential to ensure that the specified mating dimensions and tolerances are maintained in all operating conditions.

The following in particular must be kept in mind:

- Axial runout of flange mounting surface
- Radial runout of the motor shaftMaintaining the scanning gap (a), while
- taking into account the superimposition of motions, such as:
  - The length relation of the motor shaft and housing under temperature influence (T<sub>1</sub>; T<sub>2</sub>; α1; α2) depending on the position of the fixed bearing (b)
     The bearing play (Cx)
- Nondynamic shaft offsets due to load (X<sub>1</sub>)
- The effect of engaging motor brakes (X<sub>2</sub>)

The application analysis must result in values within specification under all operating conditions (above all under max. load and at minimum and maximum operating temperature for the measured

- max. runout of the motor shaft
- max. runout of the motor shaft with respect to the mounting surface
- max. scanning gap (a)

• minimum scanning gap (a)

and under consideration of the signal amplitude (by inspecting the scanning gap at room temperature) by means of ATS software.

Furthermore, the general mechanical and electrical information in the current "Position Encoders for Servo Drives" brochure must be kept in mind!



### Mounting/Removal Preparing Installation

#### Align

Place the rotary encoder flat with the flange side on a clean, even surface (e.g. a granite plate). The shaft detent (arrow) must be disabled, i.e. the encoder shaft must move freely within the encoder housing.



#### Lock

Press the encoder housing (stator) against the supporting surface and tighten the locking ring by turning it clockwise until it is **finger tight**.



#### Ready for mounting

The rated scanning gap is set now. The encoder shaft is locked and the connector is blocked.



#### Check

Ensure the correct position of the locking ring. The ring ends must lie between the encoder shaft and the clamping ring (no overhang permitted).



## Mounting/Removing the Rotary Encoder

#### Slide on the encoder

Slide the encoder into the mating shaft; do not jam it. Apply pressure only on the encoder shaft (clamping ring).



#### Screw on

Fasten the encoder housing with three screws and washers.

- M3 screws; head  $\emptyset \le 5.5$  mm
- Washers as per ISO 7092
- Tightening torque 0.9  $\pm$  0.05 Nm (with torque wrench)

If required, fasten the clamp of the output cable. Appropriate tools are available from HEIDENHAIN.

Evenly tighten crosswise the clamping screws (SW 2.0, 6x60°) with increasing tightening torque. Do not exert additional axial pressure; final tightening torque =





#### Release the lock

Clamp the shaft

0.5 ± 0.05 Nm.

Turn the locking ring counterclockwise up to the stop (snap-in point). The locking ring is now in its operating position: the connector is accessible.

#### **Removing the Rotary Encoder**

The encoder is removed in the opposite sequence with a loosened shaft lock. Remount only if the encoder and mounting parts are in faultless condition.



### Checking the Mounting

#### Examination with ATS software

(At room temperature,  $U_P = 5 \text{ V}$ ) Start the ATS software.



Rotary encoder inspection is supported as of ATS version 2.2.00. The software version can be called over "Help" in the menu bar.



#### Connect the testing cable

(JAE 15-pin plug connector; ensure proper polarization). Check the mounting quality by means of the ATS software.



Establish the connection: Select " Connect encoder" and enter the ID number. Then select " Connect."



#### Select ExI check under Mounting.

| PS Disconnect encoder          |  |
|--------------------------------|--|
| / Base functions               |  |
| Position display               |  |
| O Incremental signal diaptay   |  |
| Capitag ancoder memory         |  |
| Comparison of encoder memory   |  |
| Voltage display                |  |
| / Disgnostics                  |  |
| Absolute/incremental deviation |  |
| / Mounting                     |  |
| Bell check                     |  |
| 2 Ed mounting                  |  |
| Configuration                  |  |
| Configure hardware             |  |
| Sa Language selection          |  |
| A Manage product keys          |  |
|                                |  |
|                                |  |

#### Press "Next."

| ExI mounting check                                                                            |
|-----------------------------------------------------------------------------------------------|
| fut step: Connect the encoder                                                                 |
| Please connect the cable to the encoder.                                                      |
| Supply voltage to be set: 5.0 V                                                               |
|                                                                                               |
| (i) The encoder is concernity not being neuroned. A concept source cable is required          |
| 9                                                                                             |
| 🔉 Warning: If the supply valtage to be set does not match the connected encoder, the encoder, |
| interface card or PC could be become damaged!                                                 |
|                                                                                               |
|                                                                                               |
|                                                                                               |
| Info Next > Cancel                                                                            |

#### Check " scanning gap."

#### Important note

A signal amplitude deviating from 100 % limits permissible axial motion for operation. 5 % deviation means a reduction of 0.03 mm of the permissible axial motion for operation.

" Scanning gap" check is finished. Then select " Mounting quality." To do so, rotate the motor slowly.

| Ext mounting check                                                                      |
|-----------------------------------------------------------------------------------------|
| 2nd step: Checking the scanning gap : Measurement is running                            |
| Peak to peak amplitude                                                                  |
| Content peak to geak amplitude [*4]: 102.87<br>20 80 120 180                            |
|                                                                                         |
| Min. peak to geak amplitude [5]; Min. peak to geak incr. amplitude [Vpp];               |
| Max, peak to peak amplitude [1]: Max, peak to peak inct, amplitude [Vpp]:               |
| Nounting quality                                                                        |
| E-faint: Perminsible meaning quality: 99% - 100%.     Result:     Mounting quality [1]: |
| Lagbook Status Mourting Dasity Restant End                                              |

| Eximounti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng check                             |                                    |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|-------------|
| Zud step: Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng the scanning gap : Nearmer        | neat is running                    |             |
| Peak-to-peak an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | plitude                              |                                    |             |
| Current peak to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | peak amplitude [%]: 192.76           |                                    |             |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                   | 120                                | 100         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                    |             |
| Min. peak.to-pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k amplitude (%): 102.65              | llin, peak-to-peak ince, amplitude | [Vpg]: 1.82 |
| Max, peak-te-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ak amplitude (%): 102.93             | Hax, peakte-peak incr. amplitud    | (Vpp]:1.02  |
| <li>The particular sector of the particular se</li> | wak-to-pook amplitude should l       | ee in the range 80% to 120%.       |             |
| Mounting quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00000-00-00                        |                                    |             |
| Peta<br>Resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R: Permissible mounting qualit<br>I: | Y: 90% - 100%                      |             |
| Het Het                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ming quality (24):                   |                                    |             |

ECI 119 618500-02 😰

Check the mounting quality.

#### Important note

The mounting quality must lie within 95% to 100%. A mounting quality of < 95% indicates an inadequate mounting situation. If necessary, check the mating dimensions and repeat the mounting procedure.



The detailed results of all measurements are saved in the log file through the **logbook**. It is possible to enter comments.

| ExI mounting check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result logging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Comment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lia and a second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Is the state of the second sec |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ok Carcel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Note

The measurement results (amplitude, mounting quality, etc.) can be called over the **log file**. The log file is in the ATS program folder and has to be called using the Explorer.

| 🗲 Enthruntingtogf in tet - Editor                          |   |
|------------------------------------------------------------|---|
| Data Baahatan Puntas Andris I                              |   |
| - current value [%]: 102.31                                | 1 |
| - Maximum value [%] 102.87                                 |   |
| Mounting quality:                                          |   |
| - Limite:                                                  |   |
| - Lower Ime (%): 90                                        |   |
| - Opper limit [%; 100                                      |   |
| - Hesult                                                   |   |
| Mounting quality [%]: 96.2                                 |   |
| Comment:                                                   |   |
| This area is for users comment and will be stored together |   |
| with the Exi-check data into the logner.                   |   |
| 131 08 2010 14 28 571                                      |   |
| Encode: SND: 527130796                                     |   |
| Encode (D: 61850).02                                       |   |
| Incremental signals TVac                                   |   |
| - Besuit                                                   |   |
| - Minimum value (Vool: 1.02                                |   |
| - Maximum value (Vool: 1.03                                |   |
| Peak to peak amplitude:                                    |   |
| - Limits:                                                  |   |
| <ul> <li>Lower limit of mean value 1%1: 80</li> </ul>      |   |
| Upper limit of mean value [16]: 120                        |   |
| - Result:                                                  |   |
| - Minimum value (%): 101.52                                |   |
| - current value [%]: 102.20                                |   |
| - Maximum value (%): 102.87                                |   |
| Mounting quality:                                          |   |
| - Limits:                                                  |   |
| - Lower limit (%): 90                                      |   |
| - Upper limit (%): 100                                     |   |
| - Result:                                                  |   |
| Mounting quality [%]: 98.2                                 |   |
| Comment                                                    |   |

Active warnings and alarms can be displayed over "Status."

| Encoder status |  |
|----------------|--|
|                |  |
| Errors:        |  |
| Wanahrge       |  |
| None           |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |

Inspection complete. Select "End" or "Restart." Remove the test cable.

Mount the connecting cable.

| Exi mounting check                                                                                                                                     |                                                                    |                                                                   |            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|------------|--|
| 2nd stop: Checking the scanning gap                                                                                                                    | p : Measurement is                                                 | running                                                           |            |  |
| Back to see the section of                                                                                                                             |                                                                    |                                                                   |            |  |
| Consult and to and southeds lith                                                                                                                       | 100.27                                                             |                                                                   |            |  |
| 20                                                                                                                                                     | 80                                                                 | 120                                                               | 190        |  |
|                                                                                                                                                        |                                                                    |                                                                   |            |  |
|                                                                                                                                                        |                                                                    |                                                                   |            |  |
| Min. peak-to-peak amplitude [5]: 10                                                                                                                    | 11.13 Nin. p                                                       | eak-to-peak incr. amplitude (V                                    | /pp]= 1.01 |  |
|                                                                                                                                                        |                                                                    |                                                                   |            |  |
| Max, peak-to-peak amplitude [5]: W                                                                                                                     | 17.72 Max, p                                                       | eak-to-peak incr. amplitude p                                     | Vpp@1.03   |  |
| Max, peak-to-peak amplitude [14] N                                                                                                                     | 97.32 Max, p<br>ide should be in t                                 | eak.to-peak incr. amplitude p<br>ke range 80% te 120%.            | Vpp8:1.07  |  |
| Max, poakto-poak amplitude (%): N                                                                                                                      | 97.32 Max, p<br>rde should be in 1                                 | eak.to.peak incr. amplitude p<br>ke range 80% te 120%.            | Vpg: 1.07  |  |
| Max, peakto-peak amplitude (%): 16<br>1) The peak-to-peak amplitude<br>Homring quality<br>Default: Permissible men<br>Resett                           | 97,72 Max, p<br>ade should be in t<br>rrfing quality: 99%          | eak.to.peak incr. amplitude p<br>ko range 80% to 120%,<br>- 180%  | Vppg:1.03  |  |
| Max, peak-to-peak amplitude (*); #<br>The peak-to-peak amplitu<br>Houring quality<br>Perfault: Parmissible mea<br>Result:<br>Houring quality (*);      | 07.72 Max, p<br>ade should be in th<br>rrling quality: 90%<br>18.0 | reak-to-peak incr. amplitude p<br>ho range 80% te 120%,<br>- 180% | уруфт.03   |  |
| Max, peak-to-peak amplitude (*)4. 8<br>(1) The peak-to-peak amplitu<br>Howning quality<br>Default: Permissible men<br>Rewelt:<br>Mounting quality (*)4 | 97,72 Max. p<br>nde sheuld be in t<br>rriing quality: 90%<br>16.0  | reakto-peak incr. amplitude j<br>ke range 80% te 120%,<br>- 180%  | Vp481.03   |  |
| Max, peak-to-peak amplitude (*)4, %                                                                                                                    | 97,72 Max. p<br>nde sheuld be in t<br>nting quality: 90%<br>18.0   | reak to peak incr. anglitulo (<br>he range 80% to 120%,<br>- 180% | Vpp6:1.07  |  |

### Accessories

#### Adjusting and testing package

HEIDENHAIN offers an adjusting and testing package for diagnosis and adjustment of HEIDENHAIN encoders with absolute interface.

- IK 215 PC expansion board
- ATS adjusting and testing software



|                                               | IK 215                                                                                                                                                                                    |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Encoder input                                 | <ul> <li>EnDat 2.1 or EnDat 2.2 (absolute value with/without incremental signals)</li> <li>FANUC serial interface</li> <li>Mitsubishi High Speed Serial Interface</li> <li>SSI</li> </ul> |
| Interface                                     | PCI bus, Rev. 2.1                                                                                                                                                                         |
| System requirements                           | <ul><li> Operating system: Windows XP (Vista upon request)</li><li> Approx. 20 MB free space on the hard disk</li></ul>                                                                   |
| Signal subdivision<br>for incremental signals | Up to 65536-fold                                                                                                                                                                          |
| Dimensions                                    | 100 mm x 190 mm                                                                                                                                                                           |

|           | ATS                                                                                                                                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Languages | Choice between English or German                                                                                                                                                                               |
| Features  | <ul> <li>Position display</li> <li>Connection dialog</li> <li>Diagnostics</li> <li>Mounting wizard for ECI/EQI</li> <li>Additional functions (if supported by the encoder)</li> <li>Memory contents</li> </ul> |

#### Encoder cable

For IK 215, incl. 3 adapter connectors, 12-pin and 3 adapter connectors, 15-pin ID 621742-01

#### 15-pin adapter connector

Three connectors for replacement ID 528694-02

#### Mounting aid

For JAE connector ID 592818-01

### **Electrical Connection**

#### Cables inside the motor housing

| With one connector<br>15-pin (male), with cable clamp |          | EPG (16 x AWG30/7)<br>Cable Ø 4.5 mm | 640067-N3 |
|-------------------------------------------------------|----------|--------------------------------------|-----------|
| Length 0.3 m                                          | <b>W</b> |                                      |           |

#### **Pin layout**

| 15-pin PC | 15 13 11 9 7 5 3 1<br>15 13 11 9 7 5 3 1<br>14 12 10 8 6 4 2 |              |                 |              |                                   |                  |                |           |                                  |      |        |        |
|-----------|--------------------------------------------------------------|--------------|-----------------|--------------|-----------------------------------|------------------|----------------|-----------|----------------------------------|------|--------|--------|
|           | Power supply                                                 |              |                 |              | Incremental signals <sup>1)</sup> |                  |                |           | Absolute position values (EnDat) |      |        |        |
|           | 13                                                           | 11           | 14              | 12           | 1                                 | 2                | 3              | 4         | 7                                | 8    | 9      | 10     |
|           | U <sub>P</sub>                                               | Sensor<br>UP | 0V<br>•         | Sensor<br>0V | A+                                | A-               | B+             | B-        | DATA                             | DATA | CLOCK  | CLOCK  |
|           | Brown/<br>Green                                              | Blue         | White/<br>Green | White        | Green/<br>Black                   | Yellow/<br>Black | Blue/<br>Black | Red/Black | Gray                             | Pink | Violet | Yellow |

 $\mathbf{U}_{\mathbf{P}}$  = power supply

Sensor: The sensor line is connected internally with the corresponding power line.

Vacant pins or wires must not be used! <sup>1)</sup> Only with ordering designation EnDat01

## **HEIDENHAIN**

**DR. JOHANNES HEIDENHAIN GmbH** Dr.-Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany 2 +49 8669 31-0 FAX +49 8669 5061 E-mail: info@heidenhain.de

www.heidenhain.de

#### For more information

• Brochure: Position Encoders for Servo Drives